手机浏览器扫描二维码访问
扎里斯基早年在基辅大学学习时,对代数和数论很感兴趣,在意大利深造期间,他深受三位意大利卡斯泰尔诺沃、恩里克斯、塞维里在古典代数几何领域的深刻影响。
意大利几何学者们的研究方法本质上很富有“综合性”,他们几乎只是根据几何直观和论据,因而他们的证明中往往缺少数学上的严密性。
扎里斯基的研究明显带有代数的倾向,他的博士论文就与纯代数数学有着密切联系,精确地说是与伽罗瓦理论密切联系。
当然也就激发了他在研究方程的时候,也会用到环论这样的思想。
取得博士学位後,他在罗马的研究工作仍然主要是与伽罗瓦理论有密切联系的代数几何问题。
一九三七年扎里斯基的研究发生了重要的变化,其特点是变得更代数化了。
他所使用的研究方法和他所研究的问题都更具有代数的味道〔这些问题当然仍带有代数几何的根源和背景〕。
扎里斯基对意大利几何学者的证明感到不满意,他确信几何学的全部结构可以用纯代数的方法加以重新建立。
在一九三五年左右,现代化数学已经兴盛起来,最典型的例子是诺德与范德瓦尔登有关论着的发表。
范德瓦尔登从这个观点出发把代数几何抽象化,但是只取得了一部分成就,而扎里斯基却获得了巨大成功。
扎里斯基开始研究如果方程在坐标系里有一种图形,能不能从方程中翻译出拓扑学的一些性质呢?
对于这个方程来说,也有一种拓扑学的那种洞。
而这个洞,必须是一种无穷大那样的奇点。
最简单的奇点是通常二重点,还有尖点,迷向点,ADE奇点(确切地说这是曲面奇点,但是它可以对应成曲线奇点)
他的博士论文主要是把所有形如f(x)-tg(x)=0的方程分类,这里面f和g是多项式,x可以解为线性参数t的根式表达式。扎里斯基说明这种方程可分为五类,它们是三角或椭圆方程。
ADE奇点就是代数曲面上的有理二重点,它可以通过奇点解消的方式爆发成为ADE曲线。
ADE奇点有五种类型:
A_n型:对应方程z^2=x^2+y^n
D_n型:对应方程z^2=y(x^2+y^)(n≥4)
E_6型:对应方程z^2=x^3+y^4
E_7型:对应方程z^2=x(x^2+y^3)
E_8型:对应方程z^2=x^3+y^5
任何ADE奇点都是超曲面奇点,也是循环商奇点。它们的有理典范除子是零,重数是2。
除此以外有无穷大点,不连续的拐折点。
为了严格下定义,扎里斯基认为方程等于0,x一阶导等于0,y一阶导为0,就可以称之为奇点了。
如果f(x,y)的泰勒展开中不包含一次项的话,否则就称该点是光滑点。
换句话说,我们幂级数展开f(x,y)=ax+by+cx^2+dxy+ey^2+高次项,如果a和b不全为零,那么该原点就称为C的光滑点,否则就称为奇点。
一个带有奇点的平面曲线C必定是某个射影空间中的光滑曲线C到射影平面的投影。找出这样的光滑曲线C的过程,称为C的奇点解消或者正规化。
曲线奇点有很一些有趣的不变量来刻画,比如它的重数(就是泰勒展开式中最低项的次数),局部分支数,几何亏格,Milnor数等等。
这些不变量之间有着一定的联系,对它们的研究属于奇点拓扑这一分支。
扎里斯基对莱夫谢茨说:“我听了你的代数几何的拓扑问题后,想到让方程的拓扑学体现出来,就可以从代数簇中直接进行。代数簇的思想,不就是所有的方程本来都是多项式,而多项式仅仅有加法和乘法。就相当于是代数簇在做很多加和乘的运算来组成各种曲线,那么就是环的作用而形成曲线。代数几何的问题也就是交换环的理想的问题。”
莱夫谢茨说:“那你要是研究方程的拓扑性质,就从环这个结构开始就行了。”
扎里斯基知道这些方程不需要在坐标系里定位,所以用了仿射空间,或者叫线性空间,只需要表示他们的形状就行。
仿射空间,又称线性流形,是数学中的几何结构。这种结构是一种特殊的线性空间,是欧式空间的仿射特性的推广。在仿射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是点与点之间不可以做加法。
然后扎里斯基的工作就是把这些方程变成拓扑结构了。
在一九二七至一九三七年间,扎里斯基给出了关于曲线C的经典的黎曼-罗赫定理的拓扑证明,在这个证明中他引进了曲线C的n重对称积C(n)来研究C上度数为n的除子的线性系统。
当绿茶反派男配想上位 成就华流天王,从历经生死战开始 重生后她燃炸了 盛宠拽后:本宫就爱戏诸王 [HP同人] 隐藏在霍格沃茨当教授 我说今夜无神,于是众神陨落 快穿之大佬总是在撩我 告白未果,我决定做回低调逆袭者 肥妃有福,双面王爷倾世妃 [综影视同人] 炮灰终结者 忠犬影卫饲养法则 我当过的炮灰都成了宠文男主[快穿] [穿书]男主他想弄死我+番外 我把皇子养歪了 鬼灭RPG为美好的世界献上帝君 [咒回同人] 全员术师 BOSS伪装白莲花女主杀疯了 白夜(重生) 本座的猫儿师尊 宗门全是美强惨,小师妹是真疯批
星际时代的步兵之王!~...
古人云三千弱水,我只取一瓢饮。洛秋毫云三千佳丽,我全都要娶。十年磨一剑,一剑灭群雄。十年前,洛秋毫被人陷害导致失忆。十年后,他凭一己之力扫荡群雄,成就非凡人生,最终抱得美人归。...
宝贝,这门亲事是在你小的时候就已经定下的,不能毁约!九重天上,玉皇大帝的小女儿因为一门亲事,在天宫之内大闹了一场,闯出南天门,与西王母之子大战三百回合,最后受伤落入凡间。星月大陆,朝堂之上,皇上正与国师商讨国家生存大事。启禀皇上,微臣观看天象得知,近日会有天人降临,得天人者得天下!天佑我朝啊!...
权少秘宠攻婚36计由作者十里笑疯创作全本作品该小说情节跌宕起伏扣人心弦是一本难得的情节与文笔俱佳的好书919言情小说免费提供权少秘宠攻婚36计全文无弹窗的纯文字在线阅读。...
...
当世界成为游戏地图,人类接连变成玩偶。 起初,白幼薇以为是来自外星人的恶作剧,直到她被拉进一团光雾,清亮的机械声响起 叮!欢迎进入玩偶游戏!本游戏规则如下 1,拒绝游戏变成玩偶! 2,游戏失败变成玩偶! 3,游戏通关奖励玩偶! 白幼薇瑟瑟发抖扑进沈墨怀里我害怕,人家只是一个手无缚(腹)鸡(肌)之力的柔弱少女啊… 沈墨拉过她的小手,放自己腹肌上现在你有了。 游戏系统警告!警告!请尊重游戏,认真通关,不要谈恋爱! PS女主前期残疾,后期腿会好,1V1,HE,生存游戏无限流。...