手机浏览器扫描二维码访问
肯普和其他科学家已经注意到,证明四色问题只需要考虑三个国家有共同“交点”的情况,更多国家有共同交点的情形可以转化为前者。
因此这样对应的染色图中,每个顶点恰会连出三条边。这样的图被称为“三度图”(trivalentmap)。
有数学家观察到,如果三度图中任意由边围成的区域,边的个数都是3的倍数,那么图可以被4-染色。他进一步发现,只要存在一种给图的顶点赋值+1或-1的方法,使得每个区域的顶点数字之和都被3整除,那么图可以被4-染色。可以证明,4-染色和存在赋值方法是等价的。
在美国,数学家对四色定理的研究从未停止过。
除了约翰·霍普金斯大学的皮尔斯以及斯多利等人外,另一个研究者是保罗·温尼克。从当时的学术圣地哥廷根大学毕业的温尼克来到美国后在肯塔基大学任教。他1904年发表的论文中已经出现了可约性的雏形。然而美国数学界在四色问题上首次实质性的进展出现在1912年後。普林斯顿大学的奥斯瓦尔德·维布伦(经济学家托尔斯坦·范伯伦的侄子)是这波浪潮的先锋。他的工作重心是拓扑学,1905年证明了若尔当曲线定理。对庞加莱发展出的新代数工具有深入了解的他,很自然地开始对四色定理的研究。他使用有限几何学的观念和有限域上的关联矩阵作为工具,将四色问题转化成有限域系数空间上的方程问题。这个方向被后来的密码学家、数学家威廉·托马斯·塔特称为“量化方法”(thequantitativemethod)。同年,他的普林斯顿同僚乔治·戴维·伯克霍夫也开始探索这个方向,但一年之后他开始转向肯普的方法,也即是塔特所称的“定性方法”(thequalitativemethod),并提出可约环(reduciblering)的概念。1913年,伯克霍夫发表名为《地图的可约性》(TheReducibilityofMaps)的论文,利用可约环证明了:由不超过12个国家构成的地图都能用四色染色。1922年,伯克霍夫的学生菲利普·富兰克林运用同样的方法,将结论加强到:不超过25个国家构成的地图都能用四色染色。由于别克霍夫首次证明四色定理对不超过12个国家的地图成立,历史上证明的可染色地图的国家数上限记录被称为别克霍夫数。
伯克霍夫等人的证明是肯普的方法的延续和系统化,归纳为寻找一个不可避免的可约构形集(anunavoidablesetofreducibleconfigurations)。
这个理念已经体现在肯普的证明中。
他首先说明任一地图中必然存在以下四种构形:2邻国国家、3邻国国家、4邻国国家和5邻国国家;然后证明每种构形都是可约构形。后来希尔将这种分类方式称为“不可避免集”。
伯克霍夫的构想是使用反证法:反设存在至少需要五种颜色染色的地图,那么其中必然存在国家数最小的“极小五色地图”(five-chromaticmap)。这个地图必然是“不可约的”(irreducible)。而只要找到一组构形,使极小五色地图中不可避免地会出现其中一种构形,并且每个构形都是可约的,那么就能够通过约化,将地图的国家数减少,从而导致矛盾。
肯普找的不可避免集由四种构形组成,但他无法证明最后一种(5邻国国家)的可约性,因此伯克霍夫开始寻找刻画不可避免集的新方法。
他提出以相邻国家连成的环来将整个地图M分为三个部分:环内部分A、环外部分B以及环本身R。若环上的国家数为n就称其为n-环。如果R的任意染色都不妨碍A进行染色,那么就可以“忽略”A而将M的染色问题约化为B+R的染色问题。这时便称A+R是可约构形,R称为可约环。伯克霍夫证明了:当R是4-环,或者R是5-环且A中国家不止一个,或者A+R是“伯克霍夫菱形”时,A+R都是可约的构形。因此极小五色地图不可能包含这些构形。
富兰克林进一步证明:极小五色地图中必定包含三个邻接的五边国(5邻国的国家),或者邻接的两个五边国与一个六边国,或者邻接的一个五边国和两个六边国。他从而得出一系列的可约构形,形成了25国以下地图的不可避免的可约构形集。因此推出,极小五色地图必定至少包含26个国家。
富兰克林发现,极小五色地图必定包括以上6种情形之一。
这种方法的终极目标是找到所有地图的不可避免的可约构形集。然而随着国家数增多,要找到不可避免集并证明其可约化性就越难。这主要是因为随着环的增大,染色的方法数目会迅速增大。6-环的4-染色方法有31种,而12-环则有22144种。因此对大环围成的构形验证可约性是十分繁杂的工作。
1926年,C.N.Reynolds将别克霍夫数从25提高到27。1938年,富兰克林将其推进到31。1941年,C.E.Winn将之提高到35。而直到1968年,别克霍夫数才更新为40。
四色问题研究的下一个突破并不是在美国,而是由哥廷顿大学出身的德国数学家亨利·希尔带来的。
他在1948年提出不可避免集的存在性,但他提出的不可避免集可能包含10000个构形,其中还有18-环的庞大构形。希尔的另一个成果是在1969年提出“放电法”(dischargingmethod),为寻找不可避免集给出了系统的方法。
人工寻找不可避免构形集和验证构形可约性过于缓慢,数学家开始考虑使用当时新出现的计算机作为辅助,以提高验证的效率。构造出放电法的同时,借助于计算机来验证构形可约性的工作也飞速进展。
希尔在KarlDürre的帮助下在1965年设计了第一个算法来验证构形的可约性。他们使用的是Algol60语言,在德国汉诺威技术学院计算机中心的一台CDC1504A电脑上首次运行。1967年前,由于内存不足,只能验证12-环以下的构形。而希尔找出的不可避免集含有的大构形可以达到14-环甚至更多,计算机的能力并不足以快速完成可约性的验证。
当时美国的计算机技术领先于欧洲,因此希尔希望能够借助美国的大型计算机来证明四色定理。1967年,美国纽约布鲁克海文国家实验室(BNL)应用数学院院长邀请希尔来美国访问,并允许他使用当时世界上最快的计算机CDC6600。其后几年,希尔两度到美国寻求大型计算机的使用机会。这段时间中,Dürre将程序用FORTRAN进行重写。抱着在德国最终解决四色问题的希望,希尔回到德国,但令他失望的是,德国学术界对他的计划持否定态度,并不愿为他的程序拨出计算时间。
在数次访美时,希尔开始与沃夫冈·哈肯合作。
哈肯在1948年曾经旁听过希尔提出不可避免集的课程,之后对四色定理产生了持续的兴趣。两人通过信件交流合力作出很多进展,为最终解决四色问题铺平道路。1971年,阿佩尔也开始在哈肯的介绍下研究四色问题。然而当时哈肯对解决四色问题的前途感到悲观,因为寻找并验证合适的不可避免可约构形集实在过于复杂,即便借助计算机也需要过多的时间。塔特当时也认为,即便最乐观的估计中,不可避免集也要包含至少8000个构形。然而塔特等人也将希尔的工作介绍到美国(当时希尔的工作只在德国发表过),并引发了很多人的热情。包括弗兰科·阿莱尔、爱德华·雷尼尔·斯瓦特、弗兰科·R·伯恩哈特等人都开始寻找不可避免集以及检验可约性。哈肯和阿佩尔依赖于计算机的工作能力,因此不断改良放电过程。他们将通过放电过程寻找不可避免集的算法和验证可约性结合起来,当某个不可避免集的构形不是C-可约(可约性的一种)或难以被验证为C-可约的时候,就放弃这个不可避免集,以提高效率。两人设定了很多经验性的修正规则,比如设定三个经验性的“障碍”(三种特定的构形),当某个构形中含有这种障碍就直接认为是不可约的;又比如构形的大小不能超过14-环,等等。
1975年,哈肯找到一种很好的放电过程,但难以化为算法程序。于是两人暂时开始回归纸笔计算。这时候他们得到当时还是博士学生的约翰·科赫的支持,后者对他们提供了可约性验证算法工作上的帮助。1976年3月,他们终于得到一个由1936个构形组成的不可避免集,对应的放电过程由487条规则构成。同时伊利诺伊大学的主电脑也更换成运算速度更高的IBM360,为计算节省大量时间。经过电脑1200小时的验证,他们终于在6月得出:1936个构形都是可约构形。这代表着四色定理最终的解决[2]:35。这时候他们的几个竞争对手如阿莱尔、斯瓦特等的工作也将近尾声。
1976年6月22日,哈肯和阿佩尔首次在美国数学协会(M.A.A.)于多伦多大学召开的美国数学学会(A.M.S.)夏季会议公布他们的结果。不久,伊利诺伊大学数学系的邮戳上加上了“四种颜色就够了”(FOURCOLORSSUFFICE)的一句话,以庆祝四色猜想得到解决。9月,美国数学学会的公告专栏上刊登了两人证明四色定理的消息。
1977年,哈肯和阿佩尔将结果写成名为《任何平面地图都能用四种颜色染色》(Everyplanarmapisfourcolorable)的论文,分成上下两部分,发表在《伊利诺伊数学杂志》。
至此,困扰人们长达长久的四色问题终于被解决了。
可以看得出来长久人们围绕着四色猜想主要进行的工作都是围绕着可约性验证进行的。
在这一过程中,诸如计算机这样的新工具对简化运算带来了很大帮助~
良好的工具对科研会提供良好的助力~
然鹅工具太先进也不是什么好事情!
章杉从系统图书馆内总共看到了9种全新的证明方法。
然而有六种都没办法使用!
利用量子计算机证明是什么鬼?
现有根本没有合适的量子计算机,难道为了这次证明发明点新工具。
还有利用特子计算机证明是什么鬼!这就超出章杉的想象力了。
再几种更是没眼看~
这就很离谱!
不过好在还是有三种能用的方法的~
只是利用现有的工具即可,证明思路也很巧妙。
这就很nice了~
枭霸娇妻 我老婆是天后巨星 野蛮匪夫的小娇娇 始于心甘情愿纪初安 鬼谷八荒之开局就是三剑痴 纪初安唐石谦重生文 我是文娱之王陈轩王玲 尊养小夫郎[种田] 我没想当绿茶,真的(快穿) 纪初安唐石谦重生文 撼龙风水师 我,捡破烂成世界首富 我在古代当神医颜循韩嫣 贤者之王 少帅夫人不准逃顾婠婠霍沉离 我将败掉万亿家产张臻秋淑芬 孤岛上的平行世界III 缠绵入骨,首席老公别过分 战神入赘成首富齐昆仑谢芝真 我开局穿越三国战场造机甲
前世,稀里糊涂地被爹妈抛弃在乱军之中,历经各种凄惨之后默默死去。重生后,第一件事就是在爹妈稀里糊涂的时候,把他们抛弃了。姑娘是支潜力股,大到券商,小到散户,大家争相购入!好吧,地盘我要了,财富我要了,军师我要了,将军我要了,这世道,没有什么是本姑娘要不起的!...
记者发布会现场听说叶总为你一掷千金购豪宅?不清楚。听说叶总斥巨资为你投拍电影?不了解。有狗仔都拍到你俩在交往了,还有什么想说的?!安若素想了想,淡定回答我跟他,不熟。连续三个不,彻底让某尊大神脸色黑成包公叶总,有同行恶意抹黑,说安小姐背后有奸夫不还没等安若素说完,某人整整领带,起身,谁找我?两年前,她一夕之间从一线女星,沦为人人痛骂的杀...
她是集万千宠爱于一身的郡主。不顾身份高低信守婚约嫁给他,却落得个家破人亡,死无全尸的下场。一朝醒来,浴火重生。前世你们一层一层撕我的皮,这一世我便一点一点剜你们的心。但首先得要找个由头来退婚。传言,镇国侯家的郡主竟然思慕摄政王多年。百姓真真是有胆大不怕死的,和摄政王定亲的都惨死了,还敢思慕阎王爷。摄政王难得郡主倾心,本王不敢辜负。楚玥我只是借摄政王威名一用。肃奕临郡主莫要害羞,安心待嫁。...
若情自在天意作者叶梓潼若情自在天意txt下载三年婚姻,被不孕终结,老公出轨,小三挺着大肚子逼宫,被净身出户后...
新婚夜,她被名义上的丈夫按在了车厢里。她叫喂,说好了只结婚不上床的。他笑谁说结婚是为了上床,厨房,沙发,浴室,阳台我都不介意。臭流氓。向晚做梦都没有想到,自己的新婚丈夫竟然如此不要脸。要不是未婚夫出轨,她才不会随便在酒吧找个男人闪婚,不是说好了,他不行...
书海阁小说网免费提供作者殷小妍的经典小说陆爷的小逃妻惊艳全球了最新章节全文阅读服务本站更新及时无弹窗广告欢迎光临wwwshgtw观看小说重生七次,次次死在逃离这个男人的过程中。再次重生,顾安然表示我不逃了还不行吗!某位大佬一觉醒来,发现自家的叛逃小作精秒变粘人小甜心?从此两人过上狗粮管饱,马甲遍地走,渣渣随手虐的快意人生。剧场ktv内,大佬唱,你说你,想要逃。某女否认三连我不是我没有,别乱说!...